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INTRODUCTION 
 
This paper engages the duality between harmony and melody, representing the vertical and 
horizontal dimensions of music, respectively. Our investigation endeavors to establish a method 
for encoding the rules governing both harmonic and melodic dimensions within a composition 
using graph theory. This formalism will provide composers with the means to structure the 
harmonic and melodic dimensions of a composition according to distinct strategies, as we will 
provide a method for systematically assessing the compatibility between the melodic and 
harmonic syntax upon which a composition is based. 

In numerous instances of post-tonal music where pitch is systematically considered, the 
conventional duality between harmony and melody dissolves. Rather than adhering to distinct 
syntaxes, harmony in such compositions is frequently derived from melodic structures in various 
ways. One method involves collapsing a linear series of pitches or pitch classes onto a single 
point in time, leading to the formation of simultaneities, as discussed in [12, pages 55–60]. 

Another method is afforded by composing with pitch-class arrays. In this case, potential 
simultaneities are determined by the columns of an array.1 For instance, the first column of the 
array in Example 1 facilitates a vertical arrangement of four distinct pitch-class sets: {0, 3, 7}, 
{0, 6, 7}, {1, 3, 7}, and {1, 6, 7}. While composing with such arrays grants the composer with 
considerable freedom, it remains the case that harmonic decisions are made subsequent to the 
melodic decisions that gave rise to the rows (and therefore columns) of the array.  

 

 
EXAMPLE 1 

 
The approach presented in this paper diverges from the aforementioned methods by 

conceptualizing the horizontal and vertical dimensions of a composition as governed by distinct 
syntaxes, each defined using mathematical graph theory. This methodology offers several 
advantages: (1) it allows us to conceive the harmonic and melodic dimensions of a piece of 
music independently, and (2) it facilitates a systematic approach to assessing the compatibility 
between the two dimensions. Thus, rather than emphasizing one dimension over the other and 
deriving the less emphasized dimension from the former, our approach grants the flexibility to 
tailor both dimensions according to unique compositional strategies. Subsequently, we can assess 
their compatibility through mathematical methods.  

To accomplish our objective, we will structure our paper as follows: 
 

1. In Section 1, we provide the requisite concepts from graph theory. 
 

2. Subsequently, Section 2 introduces a precise method for encoding melodic and harmonic 
syntaxes using graph theory. 

 
3. Building upon Morris’ work [8] regarding voice leading between pitch-class sets, Section 

3 demonstrates how to encode such voice leadings within the proposed graph-theoretic 
framework. 

1 Introduction

The aim of this paper is to investigate the duality between harmony and melody in the
realm of post-tonal music and pitch-class composition. In the common practice period,
a pronounced duality exists between the rules governing harmonic and melodic progres-
sions. In other words, harmony and melody follow distinct syntaxes. We will delve into
these concepts using graph theory in the subsequent section, but for now, we present the
introduction and motivation.

In many instances of post-tonal music, the syntactic duality between harmony and
melody dissolves. Rather than being governed by distinct syntaxes, it is common for
harmony in such music to be determined by collapsing the melodic domain onto a single
point in time, forming what is often referred to as a ‘simultaneity’. For instance, Schoenberg
observed that the horizontal dimension of a piece can be derived by collapsing a sequence
of pitch-classes in a tone row to a single point in time, resulting in a chord. Wuorinen also
discusses this phenomenon in [11].

As array composition has become more prevalent since Schoenberg’s time, another com-
mon method for deriving harmony is to obtain simultaneities determined by the columns
of an array.1 For instance, the first column of the array in Example 1 allows for a vertical
arrangement of four distinct pitch-class sets: {0, 3, 7}, {0, 6, 7}, {1, 3, 7}, {1, 6, 7}. This ap-
proach allows the composer to craft, to a certain extent, both the vertical and horizontal
dimensions of the music using distinct strategies.

01 42
36 19
7 867

Figure 1: A pitch-class array.

Our approach, however, involves conceptualizing the horizontal and vertical dimensions
of a composition as governed by distinct syntaxes, with a syntax defined as a mathematical
graph. This methodology provides several advantages: (1) we can conceive of the harmonic
and melodic dimensions of a piece of music independently, and (2) assess the compatibility
between these dimensions. Instead of favoring one dimension over the other and deriv-
ing the less emphasized dimension from the former, we have the flexibility to tailor both
dimensions to our musical tastes and verify their compatibility, ensuring compositional
feasibility.

To achieve our goal, we will commence with a background in graph theory. Demonstrat-
ing that graphs can be encoded using the structure theory presented in a prior work by the
author, we highlight the advantage of this approach in encoding more specific structural
information in graphs than in the typical set-theoretic context.

1Seminal early work on array composition can be found in [1], as well as [9, 10].
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4. In Section 4, we introduce the concept of a tonal context, which is a pair consisting of a 

melodic and a harmonic syntax. Following this definition, we provide methods for 
assessing the extent to which the melodic and harmonic syntaxes of a tonal context are 
compatible with each other—specifically, whether moves in the melodic syntax can 
coincide with moves in the harmonic syntax, and vice versa. 
 

5. Section 5 concludes the paper, offering suggestions for future research. 
 
This approach will equip us with the tools to systematically analyze the compatibility between 
the horizontal and vertical dimensions of music. 
 
 
1. DIRECTED GRAPHS IN MUSIC THEORY 
 
In this section we provide the reader with the necessary background information from graph 
theory. We present the rigorous mathematical framework, as the explicitness that it affords will 
ultimately enable a more systematic method for conceiving of the melodic and harmonic 
syntaxes that we will present in Section 2.  
 Informally, a directed graph (digraph) is a mathematical structure consisting of a set of 
vertices and a set of directed arrows that connect the vertices (Example 2). Such structures have 
been extensively employed in the music-theory literature, with sources like [2, 3, 6, 7, 8] offering 
a rich background. Additionally, more recent works, such as [13], utilize graph theory in novel 
ways.  
 

 
EXAMPLE 2 

 
 For our purposes, we define digraphs explicitly using the following set-theoretic 
definition. 
 
Definition 1 (Directed graph). A directed graph, or digraph, is a quadruple (*, +, ,, -) where * 
and + are sets, and , ∶ + → * and - ∶ + → * are set functions where , gives the source vertex of 
an arrow and - gives its target vertex. 
 
 An example of a digraph is the following. Let * = {2, 3, 4} be a vertex set and + =
{5, 6, 7} an arrow set. Define the source map , ∶ * → + such that ,(5) = ,(7) = 2 and ,(6) = 3. 
Next, define the target map - ∶ * → + such that -(5) = 3 and -(6) = -(7) = 4. Then the digraph 
(*, +, ,, -) can be visualized as in Example 3. 
 

a b

c

Figure 2: A directed graph.

Subsequently, we will present the precise formalism for investigating the duality of
harmonic and melodic syntax. Contextualizing our work initially in relation to Morris’s
work in [8], situated in a similar area of inquiry, we will then carve our own path by
introducing the concept of a ‘tonal context’. A ‘tonal context’ comprises a pair consisting
of a melodic and harmonic syntax. We will investigate the conditions under which such
syntaxes are ‘compatible’ with one another.

The exploration in this section will propose innovative methods of pitch-class compo-
sition, allowing composers to individually tailor the harmonic and melodic dimensions of
a composition. Furthermore, these tools can benefit theorists interested in analyzing the
melodic and harmonic dimensions of music. The topics presented here therefore suggest
fruitful new methods for music composition and analytical research.

2 Directed Graphs in Music Theory

A directed graph (digraph) is a mathematical structure consisting of a set of nodes (or
vertices) and a set of arrows (or edges) that connect the nodes (Figure 2). For readers
interested in graph theory in music theory, sources such as [3, 4, 6, 7, 8] provide a rich
background. Additionally, Jason Yust’s recent contribution, [12], extensively utilizes graph
theory, o↵ering fresh perspectives.

For our purposes, we define digraphs explicitly. The formal set-theoretic definition is
the following:

Definition 2.1 (Directed graph). A directed graph, or digraph, is a quadruple (V,A, s, t)
where V and A are sets, and s and t are set functions

s, t : A ! V,

where s gives the source vertex of an arrow and t gives its target vertex.

Example 2.1. Let V = {X,Y, Z} and A = {f, g, h}, and define the maps s, t : V ! A

3
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EXAMPLE 3 

 
 

 The definition of a digraph gives rise to a mathematical category2 89:; of digraphs. A 
morphism Γ ∶ (*, +, ,, -) → (*=, +=, ,=, -=) in 89:; is given by a pair of morphisms >?, >@ on the 
vertex and arrow sets, respectively, such that the following diagram commutes. 
 

 
 

The essence of such a morphism lies in preserving the graphical structure by maintaining the 
arrow relation between vertices. 
 An alternative method to define a digraph is to combine the source and target maps into a 
single function A ∶ + → * × *, where A(5) = (C, D) indicates that 5 is an arrow from C to D. 
This approach is equivalent to the previous method, as the fact that A(5) = (C, D) is equivalent 
to the fact that ,(5) = C and -(5) = D. Henceforth, we will define digraphs using the single 
morphism approach rather than the source and target method. This distinction will become 
important later, as the single morphism approach allows us to define a digraph simply as a single 
set.  
 Before proceeding, it is crucial to highlight a potential scenario. There may be instances 
where we need duplicate elements of the vertex and/or arrow set need to occur in multiple 
locations in a digraph. Consider the digraphs in Example 4. The vertex sets of both digraphs 
contain elements from ℤ@F, used to denote pitch classes, whereas the arrow sets contain elements 
from the group G/I of transpositions and inversions. Now consider the digraph in Example 4a, 
where two instances of pitch-class 1 are present. If we were to define its digraph map as A(GJ) =
(1, 4) and A(GL) = (4, 1), it would result in the digraph shown in Example 4b. Notably, the latter 
digraph exhibits a different graphical structure compared to Example 4a—the former being 
linear, while the latter is cyclical.  
 
 
 

where

s(f) = s(h) = X,

s(g) = Y ;

t(f) = Y,

t(g) = t(h) = Z;

The digraph encoded by these morphisms can be visualized in the following diagram:

x y

z

a

bc

The definition of a digraph gives rise to a category Digr of digraphs. A morphism
� : (V,A, s, t) ! (V 0

, S
0
, s

0
, t

0) comprises a pair of morphisms � = (�0, �1) on the vertex
and arrow sets, respectively, such that the following diagram commutes:

A V

A
0

V
0

s

t

s0

t0

�1 �0

The essence of such a morphism lies in preserving the graphical structure by maintaining
the arrow relation between vertices. Henceforth, we will use the term ‘graph’ to refer to
what we have previously denoted as a ‘digraph’.

An alternative way to define a graph is to collapse the s and t morphisms into a single
morphism d : A ! V ⇥ V , where d(a) = (u, v) implies that a is an arrow from u to v.
This definition is equivalent to the former, as d(a) = (u, v) is equivalent to s(a) = u and
t(a) = v.

The structures in our structure theory behave much like sets, with the advantage that
they have additional structure. We define a graph using our structure theory, with struc-
tures A and V replacing sets. For example, we define the additive group Z12 as a structure,
which is then used to derive the vertices (understood as denoting pitch-classes) of a graph.

Before proceeding, it’s crucial to highlight a potential scenario. There may be instances
where we need duplicate elements of the vertex or arrow structure to appear in di↵erent
locations in a graph. Consider the directed graph in Figure 3a, where two instances of
pitch-class 1 are present. If we were to define our graph map d : T/I ! Z12 ⇥ Z12 as
d(T3) = (1, 4) and d(T9) = (4, 1), it would result in the graph shown in Figure 3b. Notably,
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which is then used to derive the vertices (understood as denoting pitch-classes) of a graph.
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EXAMPLE 4: TWO DIGRAPHS WITH THE SAME VERTICES AND ARROWS, BUT 

DIFFERENT GRAPHICAL STRUCTURES. 
 

 To enable definition of digraphs such as those in Example 4a, we must implement a 
method for duplicating elements in the vertex (and arrow) sets. Fortunately, category theory 
provides a solution through a construction called a coproduct. For any sets + and M, their 
coproduct + ⊔ M yields their disjoint union. For example, for the set +, its coproduct with itself 
+ ⊔ + is the set consisting of two copies of each 5 ∈ +.3 Consequently, when aiming to construct 
a digraph with vertex set * and arrow set +, we typically define our actual vertex and arrow sets 
as subsets of the infinite-fold coproducts of * with itself and + with itself, notated respectively as 
 

*= ⊂Q*
R

 

and 

+= ⊂Q+
R

. 

 
 Thus, the digraphs in 4a and 4b display distinct vertex sets. The former, *T = {1@, 1F, 4}, 
contains two instances of 1 ∈ ℤ@F, indexed by different subscripts, while the latter, *U = {1, 4}, 
contains a single instance of 1 ∈ ℤ@F. Both digraphs share the same arrow set, + = {GJ, GL}. 
 Before proceeding, we demonstrate how to encode digraphs simply as sets, rather than 
quadruples (*, +, ,, -) or triples (*, +, A). To achieve, we define the limit of a digraph function 
A ∶ + → * × * as follows: 
 

limA = YZ5, (C, D)[	|	5 ∈ +	and	C, D ∈ *	such	that	A(5) = (C, D)f. 
 
This set consists of pairs where the first coordinate is an arrow 5 and the second coordinate is a 
pair of vertices (C, D) such that 5 connects C to D.  
 
 
2. ENCODING MELODIC AND HARMONIC SYNTAX USING DIGRAPHS 
 
In this section, we illustrate how to encode melodic and harmonic syntaxes as digraphs. The 
concept of syntax revolves around a set of rules used to generate valid sequences. Typically, one 
specifies an alphabet +, and the syntax of a language comprises rules for arranging the elements 
of + into valid sequences. We can represent the syntax of a language using digraphs, where an 
arrow between vertices 2 ∈ + and 3 ∈ + signifies the ability for 3 to follow 2 in a sequence. 

1 4 1
T3 T9

(a)

1 4
T3

T9

(b)

Figure 3: Two graphs with the same vertices and arrows but di↵erent graphical structures.

d(T3) = (1, 4) and d(T9) = (4, 1), it would result in the graph shown in Figure 3b. Notably,
this graph exhibits a di↵erent graphical structure compared to Figure 3a—the former being
linear, while the latter is cyclical.

To avoid encountering this situation, we must implement a method for duplicating
elements in the vertex and arrow structures in order to express a more diverse class of
graphs. Fortunately, category theory provides a solution through a construction known as
a ‘coproduct’. When dealing with sets, such as A and B, the coproduct yields their disjoint
union. For example, given a set A, its disjoint union with itself AqA comprises two copies
of each a 2 A.2 The same concept extends to structures: the coproduct of structures S

and T , denoted as S q T , provides their disjoint union. Consequently, when aiming to
construct a graph with vertex structure V and arrow structure A, we typically define our
actual vertex and arrow structures as subobjects

V
0 ⇢

1a
V

and

A
0 ⇢

1a
A,

which may include duplicate instances of elements from V and A, respectively.3

Hence, the graphs in 3a and 3b exhibit distinct vertex structures. The former possesses
the vertex structure Va = {11, 12, 4}, while the latter has the vertex structure Vb = {1, 4}.4
Both graphs share the same arrow structure, namely A = {T3, T9}. Consequently, we can
represent both graphs as limit structures

Ga �!
Id

Limit(A
da�! Va)

2Since sets don’t have duplicate elements, a common way to represent such a disjoint union is by indexing
duplicate elements with an ordinal. For instance, two instances of a 2 A can be encoded as (a, 1), (a, 2), or
a1, a2.

3The notation
`1 X denotes the infinite-fold coproduct.

4For convenience, we use set-theoretic notation, recognizing that fully rigorous notation would involve
complexities due to the functorial nature of the objects.
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Consequently, a valid string of elements is conceptualized as any path in a digraph g, and the set 
of all valid sequences corresponds to the set of paths in g.  
 In the case of melodic syntax, we can envision a digraph with a vertex set consisting of 
pitches or pitch classes to represent such a syntax. Similarly, a harmonic syntax can be portrayed 
by a digraph with a vertex set consisting of pitch or pitch-class sets. To derive such vertex sets, 
we first define a set h of pitches or pitch classes, and then take its power set i(h) to derive the 
set of pitch or pitch-class subsets of h. We can then define a melodic syntax as a digraph with a 
vertex set as any subset of the infinite-fold coproduct of h with itself, and a harmonic syntax as a 
digraph with a vertex set as any subset of the infinite-fold coproduct of i(h) with itself.  
   
 
3. ENCODING VOICE LEADINGS BETWEEN PITCH-CLASS SETS 
 
Now that we have established the graph-theoretic foundations for conceiving harmonic and 
melodic syntaxes, we can align some of the concepts involving voice leading between pitch-class 
sets defined by Morris in [8] with the concepts presented in this paper. Morris [8, page 178] 
defines the total voice leading between two pitch-class sets + and M as follows: 
 

Given two pitch-class sets + and M, the total voice leading from + to M includes  
any and all moves from any pitch classes of + to any pitch classes of M—that is,  
all the ways one can associate the pitch classes of + with those of M in as many  
voices as necessary or desired. Each voice will be a path from a pitch class or pitch-class 
subset of + to M. 
 

From a mathematical standpoint, the definition is vague. To make the definition explicit, we 
present a formal definition of total voice leading in terms of digraphs. 
 A voice leading from + to M can be modeled as a digraph, constructed as follows. Morris 
allows for any move from any pitch classes of + to any pitch classes of M, in as many voices as 
desired. This implies that a single voice, for instance, can play multiple pitch classes from + or 
M, or that multiple voices can play the same pitch class. To construct the vertex set, we start with 
pitch-class subsets +, M ⊂ ℤ@F. Since a single voice can play multiple pitch classes from + or M, 
we need subsets of + and M. Also, since multiple voices can play the same pitch class or pitch-
class subset from + or M, we need to take coproducts that duplicate such pitch classes and pitch-
class subsets. Therefore, to encode a voice leading between + and M as a digraph, we break up 
the vertex set into two components, namely 
 

*j ⊂Qi(+)
R

 

 
and 
 

*k ⊂Qi(M).
R
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 Now let l be an arrow set. Then a voice leading from + to M is encoded as a digraph via 
a set function of the following form: 
 

Γ ∶ l → *j × *k. 
 
The notation reflects that the mapping Γ assigns an arrow m ∈ l to a pair (5, 6) ∈ *j × *k  where 
5 is a pitch class or pitch-class subset of + and 6 is a pitch class or pitch-class subset of M, 
following Morris’ definition of a voice leading from + to M. The total voice leading from + to M 
therefore is the set of all digraphs of such a form.  
 To examine concrete examples of voice leadings, refer to Example 5, sourced from [8]. 
Let’s illustrate how we would explicitly encode the voice leading in 5a. In 5a, the voice leading 
begins with three voices and transitions to two voices. The top voice plays two pitch classes from 
+, while the bottom two voices play the same pitch class from +. Subsequently, the top and 
bottom voices play one pitch class from M, while the middle voice drops out. This results in the 
vertex sets  
 

*j = {{B}F, {B}J, {2, A}} 
 
and  
 

*k = {{0}, {7}, {}}. 
 
Let l = {m@, mF, mJ} be the arrow set. We then define the map Γ ∶ l → *j × *k, defined on the 
elements of l as follows: 
 

Γ(m@) = ({2, A}, {0}), 
Γ(mF) = ({B}F, {}), 
Γ(mJ) = ({B}J, {7}). 
 

Hence, the voice leading from Example 5a is encoded by the digraph given by Γ.  
 

 
EXAMPLE 5: TWO ILLUSTRATIONS OF VOICE LEADINGS FROM PITCH-CLASS SET + 

TO M, TAKEN FROM MORRIS [8]. 

 VRLFH-LHDGLQJ SSDFHV 179

 E[DPSOH 2. RHVWULFWLRQV RQ WRWDO YRLFH-OHDGLQJ

 A = ^2AB`; B = ^017`

 (D) (E)
 1- I I 1-1.

 A=^47`;B= ^5`;C= ^238`

 (G) RO
 21.
 2.

 (F) 1. (QR UHVWULFWLRQV)

 -< I I I- I ,JI I

 7 I U I -
 4.

 ,- 3. U BU

 TKH IROORZLQJ YRLFH-OHDGLQJV FRPSO\ ZLWK R1:

 A =^128`; B = ^0378`

 (H) 1 (I)1 I 1 (J). A 1. I 1I). I . . I O

 3U- L"

 2. U 2. W 2. U
 IL I II. ' D O W Z B 1B ,T- 'I

 3.@ I  3.'

 TKH IROORZLQJ YRLFH-OHDGLQJV (SOXV (H) DQG (J) DERYH) FRPSO\ ZLWK R2:

 A = ^128`; A = ^128`; A= ^047`;
 B = ^0378` B = ^0378` B = ^257B`

 A = ^03B`;
 B = ^478`

 E[DPSOHV (H), (K), (L2), (M), DQG (N) FRPSO\ ZLWK R3.

 3.

 1,

 2 . 1. 2. 1 $ 23. L>
 A aaaaaaI
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4. ASSESSING THE COMPATIBILITY BETWEEN A HARMONIC AND A MELODIC 
SYNTAX 

 
This section culminates the preceding discussions by offering a method to evaluate the 
compatibility of a harmonic syntax with a melodic syntax, which is essential for composing 
using this dual approach: one for the piece’s harmonic dimension and the other for its melodic 
dimension. This inquiry is pivotal because the two dimensions could potentially be entirely 
incompatible, with melodic moves in the melodic syntax failing to align with the harmonic 
progressions facilitated by the harmonic syntax, or vice versa. Therefore, we define a tonal 
context as a pair (q, r), where q and r represent, respectively, the harmonic and melodic 
syntaxes that govern a musical piece or section thereof. For simplicity, we refer to the vertices in 
q as ‘pitch classes’ and those in r as ‘pitch-class sets’, although they may also be simply 
pitches or pitch sets in full generality. Henceforth, we will use the variables q and r to denote 
arbitrary melodic and harmonic syntaxes. 

Before proceeding, we introduce the concept of a path in a digraph. Intuitively, a path is a 
sequence of arrows 5@,… , 5t in a digraph such that the target vertex of each 5u is the source 
vertex of 5uv@. For instance, consider the following digraph. 

 

 
 
Here, the sequence 5@5F5J5w forms a path, whereas 5F5@ does not.  

Alternatively, we can define a path as a sequence of vertices. The example above then 
becomes the vertex sequence x2342. It is important to note that encoding a path as a series of 
arrows contains one less arrow than the number of vertices when encoded as a series of vertices. 
While conceptualizing paths as sequences of vertices is perhaps more intuitive, the set-theoretic 
encoding of digraphs—wherein paths are defined by taking the set-theoretic limit of the digraph 
morphism A ∶ + → * × *—necessitates the arrow approach for rigorous definition. Nonetheless, 
we determine the length of a path by counting its vertices.  

Formally encoding a path of length y involves defining the set y of natural numbers 
from 1 to y − 1. For a digraph represented by the morphism A ∶ + → h × h, we encode it as the 
set g = lim	A, consisting of pairs Z5, (2, 3)[ such that A(5) = (2, 3), as defined in Section 1. A 
path in g is then defined as an injective function { ∶ y → g, satisfying the condition that for 
every 9 ∈ y, if {(9) = Z5, (2, 3)[, then {(9 + 1) = Z6, (3, 4)[. This condition ensures that the 
target of the 9th arrow corresponds to the source of the (9 + 1)th arrow.  

Although mathematical clarity dictates the encoding of paths as sequences of arrows 
rather than vertices, we can devise a canonical method to translate sequences of arrows into 
sequences of vertices. For a digraph given by the function A ∶ + → * × *, its graphical structure 
and collection of vertices can be encoded such that for each vertex D ∈ *, there exists an arrow 
id} ∈ + satisfying A(id}) = (D, D). Essentially, these arrows serve to identify the vertices, as 
each points from a vertex to itself.  

syntax, and H denotes a harmonic syntax. In the following, we will assume that M is a
graph with vertices representing pitch-classes, and H is a graph with vertices representing
pitch-class sets.

Before proceeding, we introduce the concept of a ‘path’ in a graph. Intuitively, a path
is a sequence of arrows a1, . . . , ak in a graph such that the target of each ai is the source
of ai+1. For instance, consider the following graph:

w x

y z

a1

a2

a3

a4

Here, the sequence a1a2a3a4 forms a path, whereas a2a1 does not. Alternatively, we can
define a path as a sequence of vertices. The example above then becomes the vertex
sequence wxyzx. Note that the encoding of a path as a series of arrows contains one less
arrow than the number of vertices when encoded as a series of vertices. Although conceiving
paths as sequences of vertices is more intuitive, according to our structure theory, we are
required to encode paths as sequences of arrows. This poses no problem, as both definitions
are equivalent. Despite the formal encoding of paths as sequences of arrows, we will express
them as sequences of vertices, as it is more intuitive.

To formally encode a path of length k in a graph structure G, we define a totally ordered
structure

K �!
<:Fu⇢@{1,...,k�1}

Simple({1, . . . , k � 1}).

A path in G is then given by an epimonic map p : K ! G, satisfying the condition that for
every i 2 K, if p(i) = (a, (v, v0)) then p(i+1) = (a0, (v0, v00). This is of course the condition
explained above, where the target of the ith arrow must be the source of the (i + 1)th
arrow.

Now, we define the conditions under which a move between pitch-class sets in a har-
monic syntax complies with a move between pitch-classes in a melodic syntax. We will
first define the conditions under which a path in a melodic syntax M is compliant with a
single chord transition h

a�! h
0 in a harmonic syntax H. This will allow us to then define

whether a chord transition h
a�! h

0 is ‘covered’ by a collection of paths in M , meaning that
the entire chord h sounds and then the entire chord h

0. These results are then generalized
to arbitrary chord progressions a↵orded by H.

In the following, let H and M be a harmonic and melodic syntax, respectively. Also,
for a path p : K ! G, denote by pi the ith vertex in the path. As a notational convention,
we will write p# to denote the last vertex in p, for p an arbitrary path.

Definition 3.1 (Compliant (1)). Let h
a�! h

0 be an arrow in H and p a path in M . We say
that p and a are compliant i↵ there exists an m 2 h such that p1 = m and there exists an

9
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Thus, for a path of arrows { ∶ y → g, where g = lim	A, we can conceive that each arrow 
{(9) = Z5, (2, 3)[ represents the source vertex 2 of 5, and the last arrow {(y) = Zid}, (D, D)[ is 
an arrow from the last vertex in the path to itself. For instance, consider the following path:  

 
2
T
→3

U
→ 4 

 
It is encoded as the sequence Z5, (2, 3)[, Z6, (3, 4)[, Zid~, (4, 4)[, which corresponds bijectively 
with the sequence of vertices 2, 3, 4. This translation is necessary as we will later perform 
technical operations on sets, necessitating the explicit encoding of paths as sets.    
 Now we work toward explicating the conditions under which a melodic syntax q is 
compliant with a harmonic syntax r. We will first define the conditions under which a path in a 
melodic syntax q is compliant with a single chord transition ℎ

T
→ ℎ′ in a harmonic syntax r. 

This will allow us to then define whether a chord transition ℎ
T
→ ℎ′ is ‘covered’ by a collection of 

paths in q, meaning that the entire chord ℎ sounds and then the entire chord ℎ=. These results are 
then generalized to arbitrary chord progressions (paths) afforded by r. 
 Before proceeding, we present a notational convention. For a path { ∶ y → g, denote by 
{u the 9th vertex in the path, where {@ is the first vertex. We will also write {# to denote the last 
vertex in {, for { any arbitrary path.  
 
Definition 2 (Compliant). Let ℎ

T
→ ℎ= be an arrow in a harmonic syntax r and { a path in a 

melodic syntax q. We say that { and 5 are compliant, or that { complies with 5, if and only if 
there exists an Ç ∈ ℎ such that {@ = Ç and there exists an Ç= ∈ ℎ= such that {# = Ç=.  
 
 More informally, a path of pitch classes in q is compliant with a series of two pitch-class 
sets ℎ, ℎ= if the path starts with a pitch class in ℎ and ends with a pitch class in ℎ=.  
 We are particularly interested in cases where we have a set of paths É in q each of which 
is compliant with an arrow ℎ

T
→ ℎ= in r, and such that the set of starting pitch classes is equal to 

ℎ and the set of ending pitch classes is equal to ℎ=. We refer to such a set É as a cover of 5. More 
formally, the definition is as follows. 
 
Definition 3 (Cover-1). A cover of an arrow ℎ

T
→ ℎ′ in r is a set É of paths in q such 

that	{{@	|	{ ∈ É} = ℎ and {{#	|	{ ∈ É} = ℎ′.  
 
 To see an example, let ℎ = {0, 4, 5} and ℎ= = {1, 2, 3} be pitch-class sets such that there 
is an arrow ℎ

T
→ ℎ= in r. Let É = {{@, {F, {J} be a set of paths in q, defined as follows: 

 
{@ ≔ 0 → 7 → 2, 
{F ≔ 4 → A → 9 → 3, 
{J ≔ 5 → 1. 

  
Then É covers 5. 
 We now aim to generalize the above definitions so that they apply to arbitrary paths of 
pitch-class sets in r. To achieve this, we proceed as follows.  
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 Consider paths { and á, where {# = á@ = 2, signifying that the path { concludes with the 
vertex 2 from which á commences. In such instances, we can ‘glue’ { and á at their common 
point 2 using a set-theoretic colimit. Specifically, we define two morphisms 2à ∶ 1 → { and 2â ∶
1 → á in the category äãå of sets, where 1 = {∗} represents the singleton set. These two 
morphisms from a common domain are represented by the following diagram4 é in äãå. 
 

 
 

The set-theoretic colimit of é, denoted by {	+@	á, is the set-theoretic union of { and á 
modulo the equivalence relation ~ defined by {u	~	áê if and only if 2à(∗) = 2â(∗). In other 
words, the colimit {	+@	á is the union of { and á with the terminal vertex of { identified with the 
initial vertex of á. Therefore {	+@	á is the path that results from gluing the terminal vertex of { 
to the initial vertex of á, effectively merging { and á into a single path.  
 For a sequence of paths {@, … , {ë, if every path satisfies {#u = {@uv@, then we can glue 
them together via the colimit construction. We denote such a colimit construction as 
 

í{u.
ë

uì@

 

 
For instance, consider the following paths: 
 

{@ ≔ 5 → 6 → 7, 
{F ≔ 7 → A, 
{J ≔ A → m → î. 
 

The colimit obtained by successive gluings is defined as the path { = ∑ {uJ
uì@ , which 

corresponds to 5 → 6 → 7 → A → m → î.  
 Conversely, given a path {, we can derive a series of subpaths {@, … , {ë such that their 
gluing equals {: 
 

í{u = {.
ë

uì@

 

 
A collection of subpaths satisfying this condition is termed a partition of {, and each subpath is 
termed a component of the partition. For instance, the set of paths {{@, {F, {J} from above 
constitutes a partition of the path { derived from their gluing, where {@, {F, and {J are the 
components of the partition. 

m
0 2 h

0 such that p# = m
0. If p and a are compliant, then we may also say that p complies

with a.

More informally, a path of pitch-classes in a melodic syntax M is compliant with a
series of two pitch-class sets h, h0 if the path starts with a pitch-class in h and ends with a
pitch-class in h

0.
We are particularly interested in cases where we have a set of paths P in M such that

each starts with a pitch-class in h and ends with a pitch-class in h
0, and the collection of

starting pitch-classes is equal to the pitch-class set h, and the collection of ending pitch-
classes is equal to the pitch-class set h0. We refer to such a set P as a cover of a. Formally:

Definition 3.2 (Cover (1)). A cover of an arrow h
a�! h

0 is a set P of paths in M such
that {p1 | p 2 P} = h and {p# | p 2 P} = h

0.

Example 3.1. Let h = {0, 4, 5} and h
0 = {1, 2, 3} be pitch-class sets such that there is an

arrow h
a�! h

0 in H. Let P = {p, p0, p00} be a set of paths in M , each defined as follows:

p := 0 ! 7 ! 2,

p
0 := 4 ! 10 ! 9 ! 3,

p
00 := 5 ! 1.

Then P covers a.

We now aim to generalize the above definitions so that they apply to arbitrary sequences
of pitch-class sets in H. To achieve this, we proceed as follows.

Consider paths p and q, where p# = q1 = x. In this case, we can ‘glue’ p and q at their
common point x using a colimit operation. Specifically, we define a diagram D:

1 p

q

xp

xq

where the maps xp and xq identify the beginning and end vertex, respectively, of p and q.
Then the colimit

colim D := p� q

is the path that results from gluing the last vertex of p to the first vertex of q, e↵ectively
merging p and q into a larger path. For a series of paths p

1
, . . . , p

n, if every path is such
that pi# = p

i+1
1 , then we can glue them all together via the colimit construction above. We

denote such a construction by K

i2I
p
i
.

10
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Now, our current objective is to leverage these concepts of ‘gluing’ and ‘partition’ to 

generalize the notion of a covering introduced earlier. Whereas our previous discussion was 
confined to a single transition of pitch-class sets ℎ

T
→ ℎ= in a harmonic syntax r, we now aim to 

extend the concept of a covering to arbitrary paths in r.  
 
Definition 4 (Cover-2). Let ñ be a path in r of length ó. A cover of ñ consists of a set É of 
paths in q, equipped with partitions Φ({) of size ó − 1 for each { ∈ É such that the following 
condition is satisfied: 
 

• Define the set 
 

Φêu ≔ ôZö({)u	[
ê
		|	{ ∈ Éõ, 

 
consisting of the úth vertex of each 9th component of the partitioned paths in É. Then, for 
ñu in ñ, with 1 ≤ 9 < ó, we require that Φ@

u = ñu. Furthermore, for the last harmony ñë 
in ñ, we require Φ#

ë = ñë. 
 
 Hence a cover of a harmonic progression consists of a set of melodic voices capable of 
manifesting the progression’s harmonies through their vertical alignment. Of coures, it’s possible 
that for such a path ñ in r, a cover derived from q may not exist. In such instances, q and r 
are deemed incompatible syntaxes, as certain harmonic progressions in r cannot be realized by 
the melodic potentialities offered by q. Hence, we provide a definition.  
 
Definition 5 (Compatible). For a tonal context (q,r), we say that q and r are compatible if 
and only if for every path ñ ∈ r, q admits a cover of ñ. 
 

A potential area for further research involves exploring different types of compatibilities 
between melodic and harmonic syntaxes. This could entail developing more nuanced 
classifications of the types of compatibilities that may arise. Additionally, examining degrees of 
compatibility, such as determining the number of paths in r that q can cover, presents another 
avenue for investigation. 
 We conclude this section with a musical example of a cover (in the sense of Definition 
4). This rather trivial example showcases how the harmonic and melodic dimensions of a 
composition can be structured indepedently, each following distinct strategies, before converging 
to shape the music’s surface. Example 6a provides a melodic syntax q, while Example 6b 
presents a path ñ of pitch-class sets, presumably situated within a larger ambient harmonic 
syntax r. A cover of ñ can be derived from paths {, á, and ; in q, with their respective 
partitions represented by the columns in the following array. 
 

 

and for the last harmony ~n in ~ we have

⇧n
# = ~n.

Hence a cover of a harmonic progression consists of a set of melodic voices that are able
to realize the harmonies of the progression. Of course, it may be the case that for such a
path ~ in H there does not exist a cover of ~ that can be derived from M . In this case,
H and M are not totally compatible syntaxes, since there are harmonic progressions in H

that cannot be realized by the melodic possibilities a↵orded by M . Hence we provide a
definition:

Definition 3.5 (Compatible). For a melodic and harmonic syntax M and H, respectively,
we say that M and H are compatible i↵ for every path ~ in H, M admits a cover of ~.

An idea for further research is to investigate di↵erent kinds of compatibilities that can
arise between harmonic and melodic syntaxes.

We close this section with a musical example of a cover.

Example 3.3. The rather trivial example here is meant to demonstrate how the harmonic
and melodic dimensions of a composition can be structured individually according to dis-
tinct strategies, and then brought together to form the surface of the music. Figure 5a
presents a melodic syntax M , while Figure 5b presents a path ~ of pitch-class sets. One can
derive a cover of ~ from the following paths p, q, r in M , where their respective partitions
are expressed by the columns in the array:

p: 05 077A5983B6 1161
q: 14B3 295 29772
r: 4B59 47079A5B3 41123B65

It is evident that the melodic and harmonic dimensions follow distinct compositional
strategies. The harmonic strategy features a series of pitch-class sets, where each is derived
from the former by changing one pitch-class up or down a semitone. Moreover, the set-
class of the first pitch-class set (014) is the same as the last pitch-class set, whereas the
intermediate pitch-class sets are distinct set-classes (namely, (024) and (013)). One can
characterize the harmonic strategy therefore as a process by which a harmony is getting
iteratively ‘deformed’, eventually returning to a version of itself that is ‘transformed’ (in
this case, transposed). On the other hand, the melodic dimension is characterized by
featuring many instances of pitch-class-interval 7. The two distinct strategies meet to
construct the surface of the music, characterized by static harmonies that are interrupted
by bursts of melodic motion (Figure 6).

12
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It is evident that the melodic and harmonic dimensions follow distinct compositional 
strategies. The harmonic strategy features a series of pitch-class sets, each derived from the 
preceding one by shifting one pitch class up or down a semitone. Notably, while the initial and 
final pitch-class sets share the same set class (014), the intermediate pitch-class sets represent 
distinct set classes—specifically, (024) and (013). Consequently, the harmonic strategy can be 
characterized as a process in which a harmony undergoes iterative ‘deformation’, where its 
intervallic structure is not preserved, ultimately resulting in a ‘transformed’ version of its initial 
self (in this case, a transposition, which preserves the interval structure of the initial chord).  

On the other hand, the melodic dimension is characterized by featuring many instances of 
pitch-class interval 7 in paths { and á, and pitch-class interval 1 in path ;. The melodic and 
harmonic strategies converge to shape the surface of the music, characterized by static harmonies 
that are interrupted by bursts of melodic motion (Example 7).  
 
 
5. CONCLUSION 

This paper aims to provide a valuable perspective on the interplay between harmony and melody 
in music, targeting composers and theorists engaged in systematic approaches to composition 
and analysis. A distinguishing feature of our approach lies in the ability to customize the 
harmonic and melodic syntaxes of a musical composition, addressing a relatively unexplored 
aspect in post-tonal music theory and composition.  

While existing literature in post-tonal music theory often emphasizes the construction of 
pitch-class series governing the linear progression of pitch classes over time, our approach seeks 
to reintroduce the vertical dimension of music as amenable to sophisticated compositional 
strategies. 

Arrays, as generalizations of series, enable the simultaneous unfolding of multiple series, 
granting composers the freedom to construct chords from array columns. This method offers 
greater flexibility in harmonic construction compared to a single row. However, in many cases, 
the treatment of harmony remains a secondary consequence of the linear unfolding of series. In 
contrast, our approach explicitly addresses both harmonic and melodic strategies. The concepts 
of ‘compliance’, ‘covering’, and ‘compatibility’ introduced in this paper provide composers with 
a systematic method to identify compatible harmonic progressions with specific pitch and pitch-
class sequences. Future research may involve implementing computer programs to search for 
these compatibilities, enabling composers to incorporate the results into their compositions with 
greater ease.  

Further exploration in this area could delve deeper into the diverse relationships and 
compatibilities between harmonic and melodic syntaxes. We hope that our work inspires 
theorists and composers interested in innovative approaches to the melodic and harmonic 
dimensions of music within the realm of systematic approaches to composition.  
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EXAMPLE 7: MUSICAL REALIZATION OF A COVERING. 
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NOTES 
 

1. Seminal early work on array composition can be found in [1], as well as [7, 8]. 
2. For background information in category theory see [4]. For the use of categories in music 

theory, refer to sources such as [5, 6, 9]. 
3. Since sets don’t have duplicate elements, a common way to represent such a disjoint 

union is by indexing duplicate elements with an ordinal. For instance, two instances of 
5 ∈ + can be encoded as (5, 1), (5, 2), or 5@, 5F. 

4. A diagram in a category ü is a functor é ∶ † → ü, where † is called the index category of 
the diagram. Essentially, a diagram picks out a set of objects and morphisms in ü. 
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