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INTRODUCTION

This paper engages the duality between harmony and melody, representing the vertical and
horizontal dimensions of music, respectively. Our investigation endeavors to establish a method
for encoding the rules governing both harmonic and melodic dimensions within a composition
using graph theory. This formalism will provide composers with the means to structure the
harmonic and melodic dimensions of a composition according to distinct strategies, as we will
provide a method for systematically assessing the compatibility between the melodic and
harmonic syntax upon which a composition is based.

In numerous instances of post-tonal music where pitch is systematically considered, the
conventional duality between harmony and melody dissolves. Rather than adhering to distinct
syntaxes, harmony in such compositions is frequently derived from melodic structures in various
ways. One method involves collapsing a linear series of pitches or pitch classes onto a single
point in time, leading to the formation of simultaneities, as discussed in [12, pages 55-60].

Another method is afforded by composing with pitch-class arrays. In this case, potential
simultaneities are determined by the columns of an array.! For instance, the first column of the
array in Example 1 facilitates a vertical arrangement of four distinct pitch-class sets: {0, 3,7},
{0,6,7},{1, 3,7}, and {1, 6, 7}. While composing with such arrays grants the composer with
considerable freedom, it remains the case that harmonic decisions are made subsequent to the
melodic decisions that gave rise to the rows (and therefore columns) of the array.

01 | 42
36 | 19
7 | 867
EXAMPLE 1

The approach presented in this paper diverges from the aforementioned methods by
conceptualizing the horizontal and vertical dimensions of a composition as governed by distinct
syntaxes, each defined using mathematical graph theory. This methodology offers several
advantages: (1) it allows us to conceive the harmonic and melodic dimensions of a piece of
music independently, and (2) it facilitates a systematic approach to assessing the compatibility
between the two dimensions. Thus, rather than emphasizing one dimension over the other and
deriving the less emphasized dimension from the former, our approach grants the flexibility to
tailor both dimensions according to unique compositional strategies. Subsequently, we can assess
their compatibility through mathematical methods.

To accomplish our objective, we will structure our paper as follows:

1. In Section 1, we provide the requisite concepts from graph theory.

2. Subsequently, Section 2 introduces a precise method for encoding melodic and harmonic
syntaxes using graph theory.

3. Building upon Morris’ work [8] regarding voice leading between pitch-class sets, Section
3 demonstrates how to encode such voice leadings within the proposed graph-theoretic
framework.



4. In Section 4, we introduce the concept of a tonal context, which is a pair consisting of a
melodic and a harmonic syntax. Following this definition, we provide methods for
assessing the extent to which the melodic and harmonic syntaxes of a tonal context are
compatible with each other—specifically, whether moves in the melodic syntax can
coincide with moves in the harmonic syntax, and vice versa.

5. Section 5 concludes the paper, offering suggestions for future research.

This approach will equip us with the tools to systematically analyze the compatibility between
the horizontal and vertical dimensions of music.

1. DIRECTED GRAPHS IN MUSIC THEORY

In this section we provide the reader with the necessary background information from graph
theory. We present the rigorous mathematical framework, as the explicitness that it affords will
ultimately enable a more systematic method for conceiving of the melodic and harmonic
syntaxes that we will present in Section 2.

Informally, a directed graph (digraph) is a mathematical structure consisting of a set of
vertices and a set of directed arrows that connect the vertices (Example 2). Such structures have
been extensively employed in the music-theory literature, with sources like [2, 3, 6, 7, 8] offering
a rich background. Additionally, more recent works, such as [13], utilize graph theory in novel
ways.

C

EXAMPLE 2

For our purposes, we define digraphs explicitly using the following set-theoretic
definition.

Definition 1 (Directed graph). A directed graph, or digraph, is a quadruple (V, 4, s, t) where V
and A are sets, ands : A - V and t : A = V are set functions where s gives the source vertex of
an arrow and t gives its target vertex.

An example of a digraph is the following. Let V = {x,y, z} be a vertex set and 4 =
{a, b, c} an arrow set. Define the source map s : V — A such that s(a) = s(¢) = x and s(b) = y.
Next, define the target map t : V — A such that t(a) = y and t(b) = t(c) = z. Then the digraph
(V,A, s, t) can be visualized as in Example 3.
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EXAMPLE 3

The definition of a digraph gives rise to a mathematical category? Digr of digraphs. A
morphism I : (V,4,s,t) = (V',A',s',t") in Digr is given by a pair of morphisms y,, y; on the
vertex and arrow sets, respectively, such that the following diagram commutes.

S
A v
t
S/
ATV
t/

The essence of such a morphism lies in preserving the graphical structure by maintaining the
arrow relation between vertices.

An alternative method to define a digraph is to combine the source and target maps into a
single functiond : A - V X V, where d(a) = (u, v) indicates that a is an arrow from u to v.
This approach is equivalent to the previous method, as the fact that d(a) = (u, v) is equivalent
to the fact that s(a) = u and t(a) = v. Henceforth, we will define digraphs using the single
morphism approach rather than the source and target method. This distinction will become
important later, as the single morphism approach allows us to define a digraph simply as a single
set.

Before proceeding, it is crucial to highlight a potential scenario. There may be instances
where we need duplicate elements of the vertex and/or arrow set need to occur in multiple
locations in a digraph. Consider the digraphs in Example 4. The vertex sets of both digraphs
contain elements from Z,, used to denote pitch classes, whereas the arrow sets contain elements
from the group T /I of transpositions and inversions. Now consider the digraph in Example 4a,
where two instances of pitch-class 1 are present. If we were to define its digraph map as d(T3) =
(1,4) and d(Ty) = (4,1), it would result in the digraph shown in Example 4b. Notably, the latter
digraph exhibits a different graphical structure compared to Example 4a—the former being
linear, while the latter is cyclical.
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EXAMPLE 4: TWO DIGRAPHS WITH THE SAME VERTICES AND ARROWS, BUT
DIFFERENT GRAPHICAL STRUCTURES.

To enable definition of digraphs such as those in Example 4a, we must implement a
method for duplicating elements in the vertex (and arrow) sets. Fortunately, category theory
provides a solution through a construction called a coproduct. For any sets A and B, their
coproduct A U B yields their disjoint union. For example, for the set 4, its coproduct with itself
A U A is the set consisting of two copies of each a € A.> Consequently, when aiming to construct
a digraph with vertex set V and arrow set A, we typically define our actual vertex and arrow sets
as subsets of the infinite-fold coproducts of V' with itself and A with itself, notated respectively as

V' c V
and

A c A.

Thus, the digraphs in 4a and 4b display distinct vertex sets. The former, V, = {14, 1,,4},
contains two instances of 1 € Z;,, indexed by different subscripts, while the latter, V;, = {1, 4},
contains a single instance of 1 € Z,,. Both digraphs share the same arrow set, A = {T;, To}.

Before proceeding, we demonstrate how to encode digraphs simply as sets, rather than
quadruples (V, 4, s, t) or triples (V, 4, d). To achieve, we define the /imit of a digraph function
d:A—-V XV as follows:

limd = {(a, (u, v)) | a € Aand u, v € V such that d(a) = (u, v)}.

This set consists of pairs where the first coordinate is an arrow a and the second coordinate is a
pair of vertices (u, v) such that a connects u to v.

2. ENCODING MELODIC AND HARMONIC SYNTAX USING DIGRAPHS

In this section, we illustrate how to encode melodic and harmonic syntaxes as digraphs. The
concept of syntax revolves around a set of rules used to generate valid sequences. Typically, one
specifies an alphabet A, and the syntax of a language comprises rules for arranging the elements
of A into valid sequences. We can represent the syntax of a language using digraphs, where an
arrow between vertices x € A and y € A signifies the ability for y to follow x in a sequence.



Consequently, a valid string of elements is conceptualized as any path in a digraph G, and the set
of all valid sequences corresponds to the set of paths in G.

In the case of melodic syntax, we can envision a digraph with a vertex set consisting of
pitches or pitch classes to represent such a syntax. Similarly, a harmonic syntax can be portrayed
by a digraph with a vertex set consisting of pitch or pitch-class sets. To derive such vertex sets,
we first define a set Z of pitches or pitch classes, and then take its power set P(Z) to derive the
set of pitch or pitch-class subsets of Z. We can then define a melodic syntax as a digraph with a
vertex set as any subset of the infinite-fold coproduct of Z with itself, and a harmonic syntax as a
digraph with a vertex set as any subset of the infinite-fold coproduct of P (Z) with itself.

3. ENCODING VOICE LEADINGS BETWEEN PITCH-CLASS SETS

Now that we have established the graph-theoretic foundations for conceiving harmonic and
melodic syntaxes, we can align some of the concepts involving voice leading between pitch-class
sets defined by Morris in [8] with the concepts presented in this paper. Morris [8, page 178]
defines the total voice leading between two pitch-class sets A and B as follows:

Given two pitch-class sets A and B, the total voice leading from A to B includes

any and all moves from any pitch classes of A to any pitch classes of B—that is,

all the ways one can associate the pitch classes of A with those of B in as many

voices as necessary or desired. Each voice will be a path from a pitch class or pitch-class
subset of A to B.

From a mathematical standpoint, the definition is vague. To make the definition explicit, we
present a formal definition of total voice leading in terms of digraphs.

A voice leading from A to B can be modeled as a digraph, constructed as follows. Morris
allows for any move from any pitch classes of A to any pitch classes of B, in as many voices as
desired. This implies that a single voice, for instance, can play multiple pitch classes from 4 or
B, or that multiple voices can play the same pitch class. To construct the vertex set, we start with
pitch-class subsets 4, B € Z,,. Since a single voice can play multiple pitch classes from A or B,
we need subsets of A and B. Also, since multiple voices can play the same pitch class or pitch-
class subset from A or B, we need to take coproducts that duplicate such pitch classes and pitch-
class subsets. Therefore, to encode a voice leading between A and B as a digraph, we break up
the vertex set into two components, namely

Vv, c ]i[?(A)

and

Vy © ]j?(B).



Now let E be an arrow set. Then a voice leading from A to B is encoded as a digraph via
a set function of the following form:

[t E->Vy XV

The notation reflects that the mapping I assigns an arrow e € E to a pair (a, b) € V,; X Vg where
a is a pitch class or pitch-class subset of A and b is a pitch class or pitch-class subset of B,
following Morris’ definition of a voice leading from A to B. The total voice leading from A to B
therefore is the set of all digraphs of such a form.

To examine concrete examples of voice leadings, refer to Example 5, sourced from [8].
Let’s illustrate how we would explicitly encode the voice leading in 5a. In 5a, the voice leading
begins with three voices and transitions to two voices. The top voice plays two pitch classes from
A, while the bottom two voices play the same pitch class from A. Subsequently, the top and
bottom voices play one pitch class from B, while the middle voice drops out. This results in the
vertex sets

Va = {{B}2, {B}3, {2, A}}

and

Ve = {{0}, {7}, {}}-

Let E = {e,, e,, e3} be the arrow set. We then define the map I' : E — V,; X V5, defined on the
elements of E as follows:

I'(er) = ({2, A}, {O),
I'(ez) = ({B}2. {1,
I'(es) = ({B}s, {7]).

Hence, the voice leading from Example 5a is encoded by the digraph given by I'.

A = {2AB}; B = {017}

(a (®)
al- | 1'; | |
s
) 2. !
2 | 8 .
: = : L H
3. 7.

EXAMPLE 5: TWO ILLUSTRATIONS OF VOICE LEADINGS FROM PITCH-CLASS SET A
TO B, TAKEN FROM MORRIS [8].



4. ASSESSING THE COMPATIBILITY BETWEEN A HARMONIC AND A MELODIC
SYNTAX

This section culminates the preceding discussions by offering a method to evaluate the
compatibility of a harmonic syntax with a melodic syntax, which is essential for composing
using this dual approach: one for the piece’s harmonic dimension and the other for its melodic
dimension. This inquiry is pivotal because the two dimensions could potentially be entirely
incompatible, with melodic moves in the melodic syntax failing to align with the harmonic
progressions facilitated by the harmonic syntax, or vice versa. Therefore, we define a fonal
context as a pair (M, H), where M and H represent, respectively, the harmonic and melodic
syntaxes that govern a musical piece or section thereof. For simplicity, we refer to the vertices in
M as ‘pitch classes’ and those in H as ‘pitch-class sets’, although they may also be simply
pitches or pitch sets in full generality. Henceforth, we will use the variables M and H to denote
arbitrary melodic and harmonic syntaxes.

Before proceeding, we introduce the concept of a path in a digraph. Intuitively, a path is a
sequence of arrows a4, ..., y in a digraph such that the target vertex of each a; is the source
vertex of a; 4. For instance, consider the following digraph.

ai
w——>x

a
an 4

Yy —— z

as

Here, the sequence a,a,asa, forms a path, whereas a,a; does not.

Alternatively, we can define a path as a sequence of vertices. The example above then
becomes the vertex sequence wxyzx. It is important to note that encoding a path as a series of
arrows contains one less arrow than the number of vertices when encoded as a series of vertices.
While conceptualizing paths as sequences of vertices is perhaps more intuitive, the set-theoretic
encoding of digraphs—wherein paths are defined by taking the set-theoretic limit of the digraph
morphism d : A - V X V—necessitates the arrow approach for rigorous definition. Nonetheless,
we determine the length of a path by counting its vertices.

Formally encoding a path of length K involves defining the set K of natural numbers
from 1 to K — 1. For a digraph represented by the morphism d : A — Z X Z, we encode it as the
set G = lim d, consisting of pairs (a, (x,¥)) such that d(a) = (x,y), as defined in Section 1. A
path in G is then defined as an injective function p : K — G, satisfying the condition that for
everyi € K, ifp(i) = (a, (x, y)), thenp(i+1) = (b, (y, z)). This condition ensures that the
target of the ith arrow corresponds to the source of the (i + 1)th arrow.

Although mathematical clarity dictates the encoding of paths as sequences of arrows
rather than vertices, we can devise a canonical method to translate sequences of arrows into
sequences of vertices. For a digraph given by the functiond : A — V X V| its graphical structure
and collection of vertices can be encoded such that for each vertex v € V, there exists an arrow
id, € A satisfying d(id,) = (v, v). Essentially, these arrows serve to identify the vertices, as
each points from a vertex to itself.



Thus, for a path of arrows p : K — G, where G = lim d, we can conceive that each arrow
p(i) = (a, (x, y)) represents the source vertex x of a, and the last arrow p(K) = (idv, (v, v)) is
an arrow from the last vertex in the path to itself. For instance, consider the following path:

a b
XDy —Z

It is encoded as the sequence (a, (x, y)), (b, (y, Z)), (idz, (z, Z)), which corresponds bijectively
with the sequence of vertices x, y, z. This translation is necessary as we will later perform
technical operations on sets, necessitating the explicit encoding of paths as sets.

Now we work toward explicating the conditions under which a melodic syntax M is
compliant with a harmonic syntax H. We will first define the conditions under which a path in a

a
melodic syntax M is compliant with a single chord transition h — h' in a harmonic syntax H.

This will allow us to then define whether a chord transition h Sw is ‘covered’ by a collection of
paths in M, meaning that the entire chord h sounds and then the entire chord h'. These results are
then generalized to arbitrary chord progressions (paths) afforded by H.

Before proceeding, we present a notational convention. For a path p : K — G, denote by
p; the ith vertex in the path, where p; is the first vertex. We will also write py to denote the last
vertex in p, for p any arbitrary path.

Definition 2 (Compliant). Let h S be an arrow in a harmonic syntax H and p a path in a
melodic syntax M. We say that p and a are compliant, or that p complies with a, if and only if

!

there exists an m € h such that p; = m and there exists an m’ € h' such that py = m'.

More informally, a path of pitch classes in M is compliant with a series of two pitch-class
sets h, h' if the path starts with a pitch class in h and ends with a pitch class in h'.
We are particularly interested in cases where we have a set of paths P in M each of which

a
is compliant with an arrow h = h' in H, and such that the set of starting pitch classes is equal to
h and the set of ending pitch classes is equal to h'. We refer to such a set P as a cover of a. More
formally, the definition is as follows.

Definition 3 (Cover-1). A cover of an arrow h 5 h' in H is a set P of paths in M such
that{p, |p € P} = hand {ps |p € P} =h'.

To see an example, let h = {0,4,5} and h' = {1, 2, 3} be pitch-class sets such that there
is an arrow h — h' in H. Let P = {p',p?, p3} be a set of paths in M, defined as follows:

pl=0->7>2,
p?=4->A->9->3,
p3:=5-1.

Then P covers a.
We now aim to generalize the above definitions so that they apply to arbitrary paths of
pitch-class sets in H. To achieve this, we proceed as follows.
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Consider paths p and q, where py = q; = x, signifying that the path p concludes with the
vertex x from which g commences. In such instances, we can ‘glue’ p and g at their common
point x using a set-theoretic colimit. Specifically, we define two morphisms x,, : 1 - p and x, :
1 — g in the category Set of sets, where 1 = {x} represents the singleton set. These two
morphisms from a common domain are represented by the following diagram* D in Set.

1
q

The set-theoretic colimit of D, denoted by p + g, is the set-theoretic union of p and q
modulo the equivalence relation ~ defined by p; ~ q; if and only if x,,(*) = x,(*). In other
words, the colimit p +; g is the union of p and g with the terminal vertex of p identified with the
initial vertex of q. Therefore p +4 q is the path that results from gluing the terminal vertex of p
to the initial vertex of g, effectively merging p and q into a single path.

For a sequence of paths p?, ..., p", if every path satisfies p; = pi*1, then we can glue
them together via the colimit construction. We denote such a colimit construction as

Tp
-~ D

pl.

n
i=1
For instance, consider the following paths:

1
2

=a-b-c,
c—d,
3i=d-oe-f.

p
p
p

The colimit obtained by successive gluings is defined as the path p = Y3_, p', which
correspondstoa - b > c—->d —e - f.

Conversely, given a path p, we can derive a series of subpaths p?, ..., p™ such that their
gluing equals p:

p' =p.

n
i=1

A collection of subpaths satisfying this condition is termed a partition of p, and each subpath is
termed a component of the partition. For instance, the set of paths {p*, p?, p3} from above
constitutes a partition of the path p derived from their gluing, where p*, p?, and p3 are the
components of the partition.
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Now, our current objective is to leverage these concepts of ‘gluing’ and ‘partition’ to
generalize the notion of a covering introduced earlier. Whereas our previous discussion was

a
confined to a single transition of pitch-class sets h = h’ in a harmonic syntax H, we now aim to
extend the concept of a covering to arbitrary paths in H.

Definition 4 (Cover-2). Let  be a path in H of length n. A cover of m consists of a set P of
paths in M, equipped with partitions ®(p) of size n — 1 for each p € P such that the following
condition is satisfied:

e Define the set
;= {(¢ ()’ ), Ip€ P},

consisting of the jth vertex of each ith component of the partitioned paths in P. Then, for
m; in 1, with 1 < i < n, we require that ®; = m;. Furthermore, for the last harmony m,,
in 1, we require ®} = m,,.

Hence a cover of a harmonic progression consists of a set of melodic voices capable of
manifesting the progression’s harmonies through their vertical alignment. Of coures, it’s possible
that for such a path  in H, a cover derived from M may not exist. In such instances, M and H
are deemed incompatible syntaxes, as certain harmonic progressions in H cannot be realized by
the melodic potentialities offered by M. Hence, we provide a definition.

Definition 5 (Compatible). For a tonal context (M, H), we say that M and H are compatible if
and only if for every path m € H, M admits a cover of 7.

A potential area for further research involves exploring different types of compatibilities
between melodic and harmonic syntaxes. This could entail developing more nuanced
classifications of the types of compatibilities that may arise. Additionally, examining degrees of
compatibility, such as determining the number of paths in H that M can cover, presents another
avenue for investigation.

We conclude this section with a musical example of a cover (in the sense of Definition
4). This rather trivial example showcases how the harmonic and melodic dimensions of a
composition can be structured indepedently, each following distinct strategies, before converging
to shape the music’s surface. Example 6a provides a melodic syntax M, while Example 6b
presents a path m of pitch-class sets, presumably situated within a larger ambient harmonic
syntax H. A cover of m can be derived from paths p, g, and r in M, with their respective
partitions represented by the columns in the following array.

p: | 05 | 077A5983B6 1161
14B3 295 29772
r: | 4B59 | 47079A5B3 | 41123B65

'Q
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It is evident that the melodic and harmonic dimensions follow distinct compositional
strategies. The harmonic strategy features a series of pitch-class sets, each derived from the
preceding one by shifting one pitch class up or down a semitone. Notably, while the initial and
final pitch-class sets share the same set class (014), the intermediate pitch-class sets represent
distinct set classes—specifically, (024) and (013). Consequently, the harmonic strategy can be
characterized as a process in which a harmony undergoes iterative ‘deformation’, where its
intervallic structure is not preserved, ultimately resulting in a ‘transformed’ version of its initial
self (in this case, a transposition, which preserves the interval structure of the initial chord).

On the other hand, the melodic dimension is characterized by featuring many instances of
pitch-class interval 7 in paths p and g, and pitch-class interval 1 in path r. The melodic and
harmonic strategies converge to shape the surface of the music, characterized by static harmonies
that are interrupted by bursts of melodic motion (Example 7).

5. CONCLUSION

This paper aims to provide a valuable perspective on the interplay between harmony and melody
in music, targeting composers and theorists engaged in systematic approaches to composition
and analysis. A distinguishing feature of our approach lies in the ability to customize the
harmonic and melodic syntaxes of a musical composition, addressing a relatively unexplored
aspect in post-tonal music theory and composition.

While existing literature in post-tonal music theory often emphasizes the construction of
pitch-class series governing the linear progression of pitch classes over time, our approach seeks
to reintroduce the vertical dimension of music as amenable to sophisticated compositional
strategies.

Arrays, as generalizations of series, enable the simultaneous unfolding of multiple series,
granting composers the freedom to construct chords from array columns. This method offers
greater flexibility in harmonic construction compared to a single row. However, in many cases,
the treatment of harmony remains a secondary consequence of the linear unfolding of series. In
contrast, our approach explicitly addresses both harmonic and melodic strategies. The concepts
of ‘compliance’, ‘covering’, and ‘compatibility’ introduced in this paper provide composers with
a systematic method to identify compatible harmonic progressions with specific pitch and pitch-
class sequences. Future research may involve implementing computer programs to search for
these compatibilities, enabling composers to incorporate the results into their compositions with
greater ease.

Further exploration in this area could delve deeper into the diverse relationships and
compatibilities between harmonic and melodic syntaxes. We hope that our work inspires
theorists and composers interested in innovative approaches to the melodic and harmonic
dimensions of music within the realm of systematic approaches to composition.
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EXAMPLE 7: MUSICAL REALIZATION OF A COVERING.
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NOTES

Seminal early work on array composition can be found in [1], as well as [7, 8].

For background information in category theory see [4]. For the use of categories in music
theory, refer to sources such as [5, 6, 9].

Since sets don’t have duplicate elements, a common way to represent such a disjoint
union is by indexing duplicate elements with an ordinal. For instance, two instances of

a € A can be encoded as (a, 1), (a, 2), or aq, a,.

A diagram in a category C is a functor D : | — C, where J is called the index category of
the diagram. Essentially, a diagram picks out a set of objects and morphisms in C.
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